View all newsletters
Receive our newsletter - data, insights and analysis delivered to you
  1. Master Bond
25 August 2022

EP45HTAN: Used for Bonding Titanium to Carbon-Carbon Composites for Use Under Extreme Temperatures

Can an adhesive maintain its strength when bonding titanium to carbon-carbon composites under extreme temperature and harsh conditions? This is precisely what researchers from QSS Group, Inc., the Ohio Aerospace Institute, and the NASA Glenn Research Center were determined to find out. They tested multiple formulations and discovered that Master Bond EP45HTAN proved to be ready for the challenge.

Bonding carbon-carbon composites to titanium

Commercially available high temperature, thermally conductive epoxies, silicones, and (inorganic) ceramic adhesives were used in this study to bond carbon-carbon composites to commercially pure (CP) titanium sheets. This study’s aim was to ascertain the feasibility of adhesive bonding in conjunction with brazing in the assembly of heat rejection systems for the Jupiter Icy Moons Orbiter (JIMO). Using bonding agents could significantly improve and simplify manufacturing while lowering costs. This investigation would also help establish the suitability for using adhesives for surface systems. Special emphasis was placed on simulating operating conditions for bonding titanium pipes to carbon-carbon face sheets for the cool end of heat rejection systems.

Testing parameters

These adhesive systems were evaluated for their mechanical performance. Bonded surfaces were subjected to extreme high/low temperatures to determine their long-term durability. Butt-strap tensile (BST) lap shear strength was measured after exposure to 530-600K (494-620°F/257-327°C) for 24 hours on the high end, and to liquid nitrogen 77K (-321°F/-196°C) for 15 minutes on the low end of the spectrum. Testing was adjusted to 530K after it was determined that subjecting bonded specimens to 600K was too severe.

Analysis

Microscopic analysis was performed at the adhesive interface and led to the disqualification of 12 out of 18 candidates. They were eliminated because voids, porosity, and cracks were observed between the bonded joints. This would adversely affect not only the strength properties, but also the thermal conductivity of the mated structure. Maintaining robust thermal conductivity was an important goal for these adhesives. Additionally, it is important to note that initial results showed some adhesive systems did not adhere well to titanium. To overcome this deficiency and improve adhesion, Ti coupons were grit blasted to roughen surfaces. The final results of this study indicated that aluminium nitride filled Master Bond EP45HTAN shared best mechanical properties and exhibited shear strength of 8-9MPa under the conditions tested.

Conclusion

This study revealed after bonding with EP45HTAN, the tensile failure took place in the outer ply of the C/C composite, demonstrating that the adhesive was stronger than composite substrate being joined together.

For more information, please contact Masterbond via the contact details on our profile.

Structural polymers offer distinct advantages over traditional fastening methods.
Because of its outstanding strength and other physical properties, Master Bond Supreme 10HT has been selected for use in several published research studies.
NEWSLETTER Sign up Tick the boxes of the newsletters you would like to receive. The top stories of the day delivered to you every weekday. A weekly roundup of the latest news and analysis, sent every Friday. The railway industry's most comprehensive news and information delivered every month.
I consent to GlobalData UK Limited collecting my details provided via this form in accordance with the Privacy Policy
SUBSCRIBED

THANK YOU

Thank you for subscribing to Railway Technology